Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Struct ; 1274: 134507, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406777

RESUMO

This study was designed to synthesize hybridizing molecules from ciprofloxacin and norfloxacin by enhancing their biological activity with tetrazoles. The synthesized compounds were investigated in the interaction with the target enzyme of fluoroquinolones (DNA gyrase) and COVID-19 main protease using molecular similarity, molecular docking, and QSAR studies. A QSAR study was carried out to explore the antibacterial activity of our compounds over Staphylococcus aureus a QSAR study, using descriptors obtained from the docking with DNA gyrase, in combination with steric type descriptors, was done obtaining suitable statistical parameters ( R 2 = 87.00 , Q L M O 2 = 71.67 , and Q E X T 2 = 73.49 ) to support our results. The binding interaction of our compounds with CoV-2-Mpro was done by molecular docking and were compared with different covalent and non-covalent inhibitors of this enzyme. For the docking studies we used several crystallographic structures of the CoV-2-Mpro. The interaction energy values and binding mode with several key residues, by our compounds, support the capability of them to be CoV-2-Mpro inhibitors. The characterization of the compounds was completed using FT-IR, 1H-NMR, 13C-NMR, 19F-NMR and HRMS spectroscopic methods. The results showed that compounds 1, 4, 5, 10 and 12 had the potential to be further studied as new antibacterial and antiviral compounds.

2.
Beilstein J Org Chem ; 16: 1277-1287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566030

RESUMO

Bisphosphonic acids (or bisphosphonates) have been successfully used in the clinic treatment of bone diseases for over decades. Additionally, the antiinflammatory activity of these compounds has been gaining attention. In our previous work, we synthesized and in vivo evaluated the bisphosphonic esters 1 and 2, finding a moderate edema inhibition upon oral and topical administration on BALB/c mice. Thus, in this work, the bioisosteric replacement of an amide functional group for an ester afforded the new bisphosphonates 3-6, which had a moderate oral edema inhibition (25 mg/kg dose) and a significant topical antiinflammatory activity (2 mg/ear) on BALB/c mice, with 6 being the most active hit (55.9% edema inhibition), comparable to the positive control (55.5% edema inhibition) on a TPA topical model. Next, to assess the acute toxicity of the synthesized derivatives, test animals were administered with 50-100 mg/kg of 3-6, respectively, by an oral route, and after 14 days, neither lethality nor a significative weight loss were observed. Finally, a structure-activity relationship (SAR) and a molecular docking analysis of 3-6 helped us to explain the trend observed in biological tests. Considering all these aspects, we propose the inhibition of MMP-8 and MMP-9 as a possible action mechanism of the synthesized derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...